Архив за месяц: Август 2014

Что представляет из себя мысль в головном мозге. Нейрофизиология мысли.

Мысль, возникающая всякий раз в головном мозге (назовем ее ментальным событием), — есть по сути мгновенные и существенные изменения как внутри большого числа нейронов, так и снаружи их, в межклеточном пространстве, в синаптических связях между нервными клетками, а также в  т.н. глиальных клетках (К глиальным клеткам головного мозга относятся все другие, кроме самих нейронов, клетки мозговой ткани. Это вспомогательные клетки, создающие микроокружение и выполняющие опорную, питательную и ряд других необходимых для нервных клеток функции. Их число в головном мозге в десятки раз превышает число нейронов. Прим. пер.)

Что удивительно, эти молекулярные изменения происходят одновременно и молниеносно во всем головном мозге, в специфических областях и цепях, используя множество различных механизмов. 

Сеть нейронов

Сеть связанных друг с другом нейронов из разных, порой сравнительно далеко расположенных участков мозга. Глиальные клетки поддерживающие, питающие и составляющие миелиновую оболочку. «Трассы» аксонов — отростки нейронов, по которым передается сигнал, дендриты — отростки нейронов, воспринимающие сигнал через синапсы (видны характерные бугорки на терминалях аксонов и дендритов).

Каждое отдельное ментальное событие использует одни и те же нейроны, которые могут образовывать свои сети в совершенно разных областях. Сигналы в этих сетях возникают единовременно с другими типами электрического взаимодействия, включая синхронные колебания и изменения электрического потенциала в межклеточном веществе головного мозга. Также с каждым новым усвоенным событием из стволовых предшественников возникают новые клетки и встраиваются в нейронные цепи. И это лишь часть механизма существования мысли в мозге.

Читать далее

Сантьяго Рамон-и-Кахаль — история открытия нервных клеток

Сантьяго Рамон-и-Кахалем (Santiago Ramón y Cajal) совместно с Камило Гольджи (Camillo Golgi) считаются создателями учения о нейроне. Их теория впервые была озвучена в 1894 году на лекции в королевском сообществе в Лондоне. Однако учение очень медленно находило своих сторонников. Веские доказательства пришли лишь в 1950-х годах, когда с помощью первых электронных микроскопов удалось получить изображения синапсов — соединений между отростками двух нейронов.

Рамон-и-Кахаль использовал технику окрашивания, предложенную К. Гольджи для того чтобы разглядеть в микроскоп морфологию тончайших волокон-отростков нервных клеток. То что ему удавалось увидеть он зарисовывал. Самые первые рисунки нервных клеток и нейронных сетей принадлежащие его руке до сих пор хранятся в музее.

Читать далее

Повышенная чувствительность к звукам при аутизме. Причины, нейробиология.

У детей с аутизмом мышцы уха имеют более высокую чувствительность к звукам по сравнению с другими детьми. К такому выводу пришли исследователи подразделения неврологии в университете Питсбурга (Lukose, R., Brown, K., Barber, C. M. & Kulesza, R. J. Quantification of the stapedial reflex reveals delayed responses in autism. Autism Res. 6, 344–53 (2013)). Некоторые исследователи заявляют, что оценка меры чувствительности мышц среднего уха к звукам может служить как простой клинический биомаркер аутизма, тогда как другие ученые принципиально возражают.

звук

В среднем ухе имеется две мышцы (стременная мышца — m. Stapedius и мышца барабанной струны — m. Tensor tympany) их функция состоит в рефлекторном сокращении в ответ на громкий звук с целью снизить амплитуду колебаний барабанной перепонки и уменьшить силу звукового удара на рецепторы улитки во внутреннем ухе. Большей частью в этом рефлексе участвует стременная мышца, поэтому рефлекс носит ее имя.

Так называемый стапедиальный рефлекс вызывается сокращением тонкой стременной мышцы внутри среднего уха в ответ на громкий звук. Сокращение мышцы оттягивает стременную кость от внутреннего уха, что снижает ее амплитуду колебаний в ответ на звук и защищает внутреннее ухо от сильной вибрации. В исследовании было обнаружено, что у детей с аутизмом стапедиальный рефлекс на доли секунд медленнее и может быть вызван звуком на несколько децибел тише, чем у других детей в контрольной группе.

Читать далее