Архив рубрики: Нейрофизиология

Когда колоть инсулин при диабете и что такое инсулиннезависимые глюкотрансферазы.

Сахарный диабет имеет много осложнений со стороны нервной системы. Инсулин порой назначают там, где без него можно обойтись. Как показала практика, даже не все врачи хорошо себе представляют что такое инсулиннезависимые глюкотрансферазы, где в каких клетках и тканях встречаются и как работают. В доступно-популярной форме не встречалось, поэтому пусть будет здесь, как попытка задуматься.

Сразу, чтоб сложилось понимание.
Диабет — истечение, утечка.
Диабет — это не повышение сахара крови, скорее это его нехватка. Но в крови то его как раз и полно. Нехватку испытывают клетки.
Вопрос почему.
Далее в доступной форме и в двух словах, о том, что скорее всего вам ни разу не рассказывали врачи о сахарном диабете и о том, что нам внушили в институтах, и что на самом деле написано в руководствах по биохимии и микробиологии клетки.

Глюкоза — универсальная энергетическая «валюта». Клетки мозга работают исключительно на глюкозе. Глюкоза просто так в клетку попасть не может, ибо клеточная мембрана в норме для неё не проницаема. Молекулы глюкозы переносят через мембрану клетки специальные белки — глюкотрансферазы. Этих трансфераз уже известно несколько типов. Если быть точнее, штук 12. Более или менее из них изучены 5. Читать далее

Половой диморфизм головного мозга или почему мальчик хочет стать девочкой ч.1

Морфология половой самоидентификации

Так случилось, что наш вид Homo Sapiens состоялся, развился и выжил, сохраняя половой диморфизм. Другими словами разделяясь по форме на два пола — мужчин и женщин (морфология, греч. morphe — форма + logos — наука). Не вдаваясь в подробности, по-видимому так было эффективнее или правильнее. На уроках биологии в школе, кто помнит, нам рассказывали, что есть первичные и вторичные половые признаки. Как минимум. Определяются строго генетически, задолго до рождения (еще в т.н. пренатальном или внутриутробном периоде) набором хромосом в оплодотворенной яйцеклетке, дальнейшем развитием и строением наружных половых органов, а затем с наступлением полового созревания и всем остальным — маскулинизацией или феминизацией скелета, телосложением и прочим.

Настаивают, что есть еще третичные — т.н. социокультурные, поведенческие. Эти самые различия ролей и моделей поведения — что пристало одному полу, никак не ожидают от другого. Кстати, именно размытие четких границ третичных половых признаков последние десятилетия является такой жаркой темой публичного обсуждения или осуждения… Не сложно догадаться, чем обусловлены первичные отличия — тут с морфологией всё ясно — чистая анатомия. С вторичными вроде тоже, — они не участвуют непосредственно в половом размножении, но могут определять предпочтения в выборе полового партнера. И здесь главную роль играет уровень половых гормонов, также рецепторов к ним на органах-мишенях, и ряд косвенных признаков обусловленных всем этим.

Самое интересное начинается с половой самоидентификации на уровне сознания, модели поведения и психики. Тут уже подключается головной мозг.

Лобные доли префронтальной коры - управление сложными моделями поведения

Лобные доли префронтальной коры — управление сложными моделями поведения

Нечеткость границ именно тут является причиной целого ряда гипотез, небезынтересных  психоаналитических догадок, а иногда даже забавных фантазий. Действительно, почему это вдруг, обнаружив у себя первичные мужские половые признаки, тем не менее, некоторые в своем сознании устойчиво себя идентифицируют с противоположным полом. «Мальчик» очень сильно хочет быть как «девочки». Он не просто хочет дружить с девочками, а постоянно сверяя себя с ними, скорее им завидует. Друзья своего пола ему безразличны, как минимум, а то и откровенно их избегает (взаимно кстати), а среди девочек он оживляется, ведет себя как в своей тарелке, они его охотно принимают в свой круг, также, малоосознавая, перепроверяют его поведение, насколько оно тождественно полу. Вся эта его порой излишняя ранимость, пугливость, недрачливость вызывает раздражение, а то и презрение со стороны однополых сверстников. И «девочка» хочет быть как «мальчики». Не бегать по двору с мальчиками, а именно обладать всеми присущими им свойствами. Читать далее

Где хранится память?

Многочисленные исследования работы мозга посвящены тому чтобы выяснить как и где хранится память. Существует ряд разных гипотез о том как устроена и функционирует память, однако пока не так много научно-подтвержденных фактов, демонстрирующих клеточно-молекулярный уровень памяти. Обзор одной из таких работ совершенной недавно группой ученых из UCLA подталкивает к выводу, что память хранится отнюдь не в синапсах как ранее считали и утраченная память при определенных условиях может быть восстановлена. Сама научная статья опубликована в свободном доступе осенью прошлого года.

Как показывает новое исследование проведенное в Калифорнийском Университете, потерянная память может быть восстановлена. Открытия дают некоторую надежду пациентам с ранней стадией когнитивных нарушений.

Десятилетия ученые нейробиологи были убеждены, что память хранится в синапсах — соединениях отростков клеток головного мозга, нейронах, — которые разрушаются при болезни Альцгеймера. (Наиболее известный и распространенный диагноз при котором самым первым признаком когнитивных нарушений является нарушение памяти. Прим. Пер.). Однако новое исследование приводит доказательства, вступающие в противоречия с идеей, что долговременная память хранится в синапсах.

Синаптические связи двух нейронов

Синаптические связи двух нейронов (Оригинал)

«Долгосрочная память не хранится в синапсе», утверждает Давид Гланцман (David Glanzman), автор работы и профессор интегративной биологии, психологии, и нейробиологии Университета в Калифорнии. «Это радикальное заявление, но оно основано на доказательствах. Похоже на то, что нервная система способна восстанавливать утраченные синаптические связи. Если ваш мозг сможет их восстановить, это означает, что память вернется. Это не так уж легко, но я убежден, это возможно».

Читать далее

Как мать влияет на активность нейронов в мозге подростка. Система вознаграждения мозга.

Какую роль негативно окрашенное отношение со стороны матери оказывает на мозг подростка? Как связана активность нейронов в определенных зонах мозга с оценкой со стороны сверстников? В какой мере подросток восприимчив к тому и иному, как это отразится на дальнейшей социализации, активной способности найти себя в социуме, реализоваться? На эти вопросы попытались ответить ученые из Западного Института Клинической Психиатрии в Питтсбурге, Университета в Калифорнии и департамента Психиатрии и Поведения Человека медицинской школы в Провиденсе.
Как известно, в подростковом возрасте нейронные структуры мозга развиваются наиболее активно. Идет потребление социально значимой информации, оценка и постоянная перепроверка полученных данных отражается на активности нейронов и их структурной перестройке. Позитивный опыт находит свое подкрепление за счет активности специфических структур (о них ниже). Негативный, наоборот, является сигналом ошибочных действий или даже возможной опасности. Под негативно окрашенной эмоциональной реакцией со стороны матери подразумевался спектр поведения — от отсутствия банальной поддержки и одобрения в процессе коммуникации, (особенно когда подросток был заинтересован в этом), до агрессивной реакции в его адрес. Существующее на протяжении длительного времени негативное отношение со стороны матери отражается на отклике нейронов в некоторых ключевых зонах мозга. Обнаружено достоверное снижение активности отклика нейронов в миндалине (Amygdala), переднем островке (Ant. insula), прилежащем ядре (N.Accumbens) и нижней передней поясной коре (sgACC — subgenual Anterior Cingulate Cortex).

система вознаграждения

Система вознаграждения в мозге человека (справа вверху). Влияние кокаина на рецепторы нейронов VTA с последующей эпигенетической трансформацией и изменением нейропластичности в системе вознаграждения. (Источник)

Этот факт можно отнести к числу первых доказательств того, что мать подростка оказывает существенное влияние на функционирование зон мозга, связанных с обработкой и получением т.н. социально обусловленной награды. Ученые полагают, что длительная негативная реакция в адрес ребенка со стороны матери может снижать интерес, и/или яркость переживания чувства удовлетворения от коммуникации в среде сверстников у подростков. Читать далее

Что представляет из себя мысль в головном мозге. Морфология мысли. Часть 3.

Мгновенные изменения в нейронах сопровождающие и обеспечивающие мысль.

Буквально фантастическая молекулярная трансформация охватывает весь объем мозга, все каскады нейронных связей. Обнаружить как морфология мысли реализуется на уровне всех этих связей чрезвычайно сложно.

Сравнительно недавно было замечено, что большинство ментальных событий не ограничено какой-либо небольшой областью или ядром в мозге. Наблюдение за мозгом с помощью очень медленного функционального магнито-резонансного сканирования (fMRI снимки мозга с интервалом в секунду) подталкивали к выводу: каждое ментальное событие в мозге имеет индивидуальную локализацию. Однако, как оказалось после более точных исследований большинство событий случаются во всем мозге сразу, во всей многосложной сети мозга в миллисекунды. В настоящее время их не так просто зафиксировать или измерить.

В эти генетические изменения вовлечены тысячи и возможно миллионы различных факторов, одновременно внося изменения в многочисленные структуры внутри клеток, клеточных сетей и межклеточное пространство.
Ниже представлен в очень упрощенном виде список некоторых наиболее важных изменений, которые происходят в головном мозге мгновенно. Каждое требует немедленного воспроизводства множества специфических белков, которые необходимы для описанных выше процессов, обеспечивающих возникновение мысли в нервных клетках головного мозга. Читать далее

Что представляет из себя мысль в головном мозге. Нейрофизиология мысли.

Мысль, возникающая всякий раз в головном мозге (назовем ее ментальным событием), — есть по сути мгновенные и существенные изменения как внутри большого числа нейронов, так и снаружи их, в межклеточном пространстве, в синаптических связях между нервными клетками, а также в  т.н. глиальных клетках (К глиальным клеткам головного мозга относятся все другие, кроме самих нейронов, клетки мозговой ткани. Это вспомогательные клетки, создающие микроокружение и выполняющие опорную, питательную и ряд других необходимых для нервных клеток функции. Их число в головном мозге в десятки раз превышает число нейронов. Прим. пер.)

Что удивительно, эти молекулярные изменения происходят одновременно и молниеносно во всем головном мозге, в специфических областях и цепях, используя множество различных механизмов. 

Сеть нейронов

Сеть связанных друг с другом нейронов из разных, порой сравнительно далеко расположенных участков мозга. Глиальные клетки поддерживающие, питающие и составляющие миелиновую оболочку. «Трассы» аксонов — отростки нейронов, по которым передается сигнал, дендриты — отростки нейронов, воспринимающие сигнал через синапсы (видны характерные бугорки на терминалях аксонов и дендритов).

Каждое отдельное ментальное событие использует одни и те же нейроны, которые могут образовывать свои сети в совершенно разных областях. Сигналы в этих сетях возникают единовременно с другими типами электрического взаимодействия, включая синхронные колебания и изменения электрического потенциала в межклеточном веществе головного мозга. Также с каждым новым усвоенным событием из стволовых предшественников возникают новые клетки и встраиваются в нейронные цепи. И это лишь часть механизма существования мысли в мозге.

Читать далее

Повышенная чувствительность к звукам при аутизме. Причины, нейробиология.

У детей с аутизмом мышцы уха имеют более высокую чувствительность к звукам по сравнению с другими детьми. К такому выводу пришли исследователи подразделения неврологии в университете Питсбурга (Lukose, R., Brown, K., Barber, C. M. & Kulesza, R. J. Quantification of the stapedial reflex reveals delayed responses in autism. Autism Res. 6, 344–53 (2013)). Некоторые исследователи заявляют, что оценка меры чувствительности мышц среднего уха к звукам может служить как простой клинический биомаркер аутизма, тогда как другие ученые принципиально возражают.

звук

В среднем ухе имеется две мышцы (стременная мышца — m. Stapedius и мышца барабанной струны — m. Tensor tympany) их функция состоит в рефлекторном сокращении в ответ на громкий звук с целью снизить амплитуду колебаний барабанной перепонки и уменьшить силу звукового удара на рецепторы улитки во внутреннем ухе. Большей частью в этом рефлексе участвует стременная мышца, поэтому рефлекс носит ее имя.

Так называемый стапедиальный рефлекс вызывается сокращением тонкой стременной мышцы внутри среднего уха в ответ на громкий звук. Сокращение мышцы оттягивает стременную кость от внутреннего уха, что снижает ее амплитуду колебаний в ответ на звук и защищает внутреннее ухо от сильной вибрации. В исследовании было обнаружено, что у детей с аутизмом стапедиальный рефлекс на доли секунд медленнее и может быть вызван звуком на несколько децибел тише, чем у других детей в контрольной группе.

Читать далее

Звуковая чувствительность, аутизм и слуховой порог. Часть 2.

Второе исследование Moller’a с коллегами выявили, как связаны не классический путь звуковой чувствительности, слуховой порог и стойкий постоянный звон в ушах. Исследователи обнаружили, что повышенная чувствительность к шуму после электрической стимуляции соматосенсорной системы зачастую обнаруживается у маленьких детей в возрасте около 8 лет и крайне редко у взрослых старше 20 лет. Moller, A. R., & Rollins, P. R. (2002). The non-classical auditory pathways are involved in hearing in children but not in adults. Neuroscience Letters, 319(1), 41–4. Это открытие интересно еще и потому, что полученные возрастные цифры связаны с развитием мозга и напрямую коррелируют с созреванием системы звуковой чувствительности.

Классический путь слуховой чувствительности

Схема классического звукового тракта. Не классический путь минует латеральную петлю (Lateral lemniscus), рассеиваясь в ретикулярной формации, связывается с миндалевидным телом и соматосенсорным трактом, не попадает в свои ассоциативные поля височных долей.

Не классический путь обработки звука больше не может оставаться в стороне от внимания специалистов. Выделено автором. Трудно не добавить, взаимосвязь чувствительности к звукам с выявленными у некоторых детей с когнитивными нарушениями, в особенности с диагнозом аутизм, вряд ли может и дальше оставаться в стороне от внимания специалистов.

Читать далее

Звуковая чувствительность, неклассический путь, нейрофизиология обработки звука. Часть 1.

Сенсорная информация звуковая или тактильная поступает в корковые центры классическим или не классическим путем. Специалисты в области слуха хорошо знакомы с трактом, благодаря которому звуковая чувствительность поступает в мозг и там обрабатывается, однако большинство из них даже не слышали о том, что звуковая чувствительность в мозге может иметь неклассический путь в высшие центры обработки звука. Исследования, начиная с 70-х годов прошлого века, впервые обнаружили структуры этого пути, тем не менее, слишком мало известно о его анатомии и физиологии, кроме как то, что альтернативный путь звуковой чувствительности восходит параллельно известному слуховому тракту.

Слуховой тракт

Классический путь звуковой чувствительности 1. Чувствительные аксоны из кохлеарного узла входят в ствол мозга 2. Кохлеарные ядра в проекции верхней оливы связываются с нижними бугорками посредством латеральной петли 3. Аксоны из нижних бугорков приходят в ядра медиальных коленчатых тел в таламусе (MGN) 4. Нейроны таламуса отдают отростки в проекцию слуховой коры височной доли через таламокортикальный тракт 5. Нейроны верхнего ядра оливы отдают волокна обратно в ухо, где иннервируют мышцы (стапедиальный рефлекс — вызывает защитное напряжение мышц натягивающих барабанную перепонку в ответ на громкие звуки, чтобы снизить подвижность косточек и тем самым уменьшить энергию передаваемых ими звуковых волн в мозг.)

Анатомически любой нейронный путь — это цепь, состоящая из нескольких нейронов, которые соединены последовательно своими отростками. Тела этих клеток, скапливаясь, залегают в т.н. ядрах, формируя серое вещество мозга. В основном там же и происходит переключение и передача импульса с одного нейрона на другой.

Классический восходящий звуковой путь начинается с ядра улитки (cochlear nucleus), следует к верхнему комплексу ядер оливы в продолговатом мозге в составе так называемой латеральной петли (lemniscus lateralis), далее через ядра нижних бугорков (inferior colliculus) в ядра медиального коленчатого тела задней части таламуса.

Читать далее

Второй мозг — нервная система кишечника и умственные заболевания. Часть 3.

Нервная система кишечника и психика

С ранних эволюционных времен стресс-охраняющий эффект грелина был весьма полезен, постольку, поскольку мы должны сохранять спокойствие во время поиска пищи и быть уравновешенными, рискуя на охоте, говорит Д. Зигман (UT Southwestern Medical Center в Далласе, Техас). В 2011 году команда исследователей под его руководством сообщила, что лабораторные мыши подвергшиеся стрессу активно искали и предпочитали более каллорийную и жирную пищу, тогда как генно-модифицированные особи, нечувствительные к воздействию грелина совсем нет. (The Journal of Clinical Investigation, vol 121, p 2684). Д. Зигман заметил, что в нашем современном мире, когда пища с высоким содержанием жиров легко доступна, в результате хронического стресса или депрессии мы сталкиваемся с постоянно повышенным уровнем грелина, и как итог — ожирение.

NRM-Gut-brain-picture-2

Стресс, эмоции, нисходящие и восходящие связи головного мозга и кишечника. (Nature Microbiology®)

М. Гершон полагает, что существует прочная связь между кишечником и психикой, потому что большое количество информации от окружающей среды приходит через пищеварительный тракт. «Не забывайте, внутреннее пространство вашего кишечника на самом деле является внешним по отношению к телу», заявляет он. Так мы способны обнаружить опасность глазами, услышать ее ушами и распознать ее внутри пищеварительного тракта. П. Пасрикша, руководитель Центра Нейрогастроэнтерологии Джона Хопкинса в Балтиморе напоминает: без кишечника не будет энергии, чтобы поддерживать жизнь.

Читать далее